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The sound field due to an oscillating bubble near 
an indented free surface 

By MICHAEL S. LONGUET-HIGGINS 
Center for Studies of Nonlinear Dynamics, La Jolla Institute, PO Box 1434, 

La Jolla, CA 92038, USA 

(Received 5 October 1989 and in revised form 21 May 1990) 

The problem is solved of the flow due to a rapidly oscillating source situated near a 
plane surface with a hemispherical indentation. The strength of the far-field flow is 
evaluated, and also the natural frequency of oscillation of a small bubble centred a t  
the same position as the source. 

1. Introduction 
It has recently been demonstrated both by laboratory experiments (Pumphrey & 

Crum 1989) and by numerical calculations (Oguz & Prosperetti 1990~)  that the main 
source of underwater sound from raindrops arises from the detachment of a bubble 
from the lowest point of the small indentation which is caused by the impact. The 
diameter of the oscillating bubble is generally much smaller than that of the surface 
indentation (see figure 1) and is also less than the depth of the bubble below the 
indentation. All these distances are generally small compared to the wavelength of 
the sound emitted by the bubble, whose frequency, of order 15 kHz, corresponds to 
a sonic wavelength of order 10 cm. 

If the surface were simply plane, then the acoustical field a t  a distance that is large 
compared to the wavelength, would be simply that of a dipole. The questions that 
we wish to consider are these: How does the presence of the indentation affect the 
strength of the radiated sound, and also the natural frequency of oscillation of the 
bubble ? 

In view of the lengthscales mentioned above it is permissible to adopt an 
approximation usual in such problems, namely that the flow is locally incompressible. 
Moreover, since the timescale for the evolution of the cavity is of the order of several 
milliseconds, which is many times the period of oscillation of the bubble, the cavity 
may be assumed to be of constant shape during the ringing of the bubble. Associated 
with this fact is that the forces governing the oscillation of the bubble (surface 
tension and internal pressure) are many times the forces (mainly inertial, but also 
gravity and surface tension) tending to change the shape of the cavity. 

Further we note that the detachment of the bubble from the free surface is very 
rapid, on a timescale comparable to an oscillation period. It then ‘rings’ at a 
relatively steady distance below the cavity. Bjerknes forces, tending to separate the 
bubble further from the free surface, are proportional to the square of the bubble 
perturbation, and so quickly become negligible. 

Under these circumstances it is possible to treat the later, linear stages of the 
bubble oscillation as a problem of potential flow with a fixed configuration of the free 
surface. For simplicity we shall assume this to be a hemisphere, which is not far from 
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“t 
FIGURE 1. Definition diagram for lengths and coordinates. 

the observed configuration a t  a short time after release of the bubble (Pumphrey & 
Crum 1989). The problem thus reduces to that shown in figure 1, with a high- 
frequency source S situated below a pressure-release surface in the form of a plane 
having a hemispherical identification. 

In  this note we shall solve the general problem very simply by the method of 
images. We obtain both the strength of the far field and the oscillation frequency as 
functions of two independent parameters. One simple result is that when the bubble 
is close to the bottom of the cavity, the strength of the dipole field is just 3 times what 
i t  would be if the bubble were at the same distance below a simple plane surface. This 
result has been applied directly to an analytic model of noise from raindrops 
(Longuet-Higgins 1990). 

During preparation of this paper, we became aware of a somewhat similar 
investigation (Oguz & Prosperetti 1990b) in which the indentation of the surface has 
a more complicated analytic form. Their solution is expressed in terms of an infinite 
series. In  our model, the solution is obtained in closed form, with a correspondingly 
simpler interpretation. I n  the Appendix to this paper we compare the oscillation 
frequencies calculated from the two different models and find a satisfactory 
agreement. 

2. Evaluation of the far field 
Figure 1 shows the axial plane section of a hemispherical indentation, centre 0 and 

radius b,  in an otherwise plane horizontal surface. A pulsating source of radian 
frequency w lies a t  a point S on the vertical axis, a t  a depth z below the lowest point 
Q on the sphere. We denote by r and 8 the polar coordinates of a typical point P in 
the fluid, with respect to the origin 0. 

The lengths b and z are assumed to be small compared to the wavelength 2nc/w of 
the radiation from the source ( c  being the sound speed) so that the fluid in the near 
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field may be assumed incompressible. Moreover, the deformation of the free surface 
under gravity and surface tension is assumed slow compared to w .  Our problem then 
reduces to finding a velocity potential $ behaving like a source 

A 
$4 --coswt 

s - P S  

near S and satisfying the boundary condition 

both on the plane boundary 8 = in and on the hemisphere r = b, (81 < in. 
The solution is obtained by first placing a sink 

cos wt 
$' B 

s -  PS 

(2.4) 
b2 

O S = -  
b + z  

at the image point S where 

and 
b 

b+z  
B=---A. 

This makes p vanish on the hemisphere. We then place a sink and source a t  the points 
S and S'" which are images of S and S' in the plane boundary. This makes p vanish 
both on the hemisphere and on the plane. The total potential, near the hemisphere, 
is thus 

Now in the far field, the source and sink a t  S and S can be approximated in the 
usual way by the dipole 

sin w (t - k) A~ case 
-SS - 

C r 

and similarly for the sink and source a t  S and S"'. As a result, the total potential in 
the far field is given by 

$ - @[a(b+z)- -  Bb2 - cos8 sinw(t-i). 
C 

On substituting the value of B from (2.5) this expression becomes 

$--- C r 

where 

Hence 

where 

(2.10) 

(2.11) 

(2.12) 
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FIQURE 2. Graph of F ( v ) ,  giving the strength of the dipole field as a function of 7 = z / b ;  see 
equation (2.9). 

71 

Note that in the absence of the hemisphere, that is if b < z or 7 %- 1 ,  then G - 1 and 
(2.9) reduces to 

2wz case 
A -  

$ - -  C r 
(2.13) 

the ordinary dipole field for a source in the neighbourhood of a plane free surface. On 
the other hand in the presence of the hemisphere, the potential (2.13) is multiplied 
by the factor G ( q ) ,  which is greater than 1. For example, when 7 < 1 or z 4 b we have 
G - 3 and the amplitude of the sound is three times that in the absence of the 
hemisphere. 

Physically, we may say that instead of the boundary of the fluid being on the 
horizontal plane through Q (in which case the pressure-release surface would be at a 
uniform height z above S), in general the free surface lies above this plane. Hence 
there is an additional mass of fluid acting to constrain the fluid motion across the 
plane. 

Figure 2 is a graph of F ( q ) ,  showing how the strength of the far field (2.9) increases 
when b is fixed and z increases from zero. 

3. Frequency of the source 
Assuming that the radius a of the bubble is small compared to both b and z we may 

find the frequency w of oscillation by equating the mean kinetic energy of the fluid 
motion to the mean potential energy of the gas in the bubble (cf. Minnaert 1933). The 
mean potential energy of the gas is easily found to be given by 

E ,  = 37~yp, A2/a3w2, (3.1) 
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where y is the ratio of the specific heats (=  7/5) and po is the equilibrium pressure 
in the bubble. The kinetic energy can be evaluated from the expression 

r r  

where p denotes the density and n is the outward normal to the boundary C of the 
fluid. For small values of a/b  and a / z  the only significant contribution to (3.2) comes 
from the surface CB of the bubble and we find 

r r  

Here $o is the singular potential (2.1) and dl denotes the remaining terms in the 
complete potential (2.6). To a sufficient approximation the potential $1 can be 
evaluated at the point S,  that  is in equation (2.6) we may take P at S. Now from 
figure 1 we have 

SAY = 2 ( b + z ) ,  t 
b2 ( b + ~ ) ~ - b '  

SAY = (b+z)-- = 
b+z b+z ' 

b2 ( b  + 2 ) 2 +  b2 
8s" = (b+z)+- = 

b+z b+z ' 

Hence near S we have 

i 
1 (3.4) 

On substituting B from (2.5), and simplifying, we obtain 

where 

- 4 + S q  + 67' + 4q3 +q4 
4+ 107 + 1 0 ~ , 1 ~ + 5 q ~ + q ~  ' 

- 

From (3.2) and (3.6) we have 

and on equating this expression to (3.1) we find 

(3.5) 

(3.10) 

So, to lowest order in a / z  there is a proportional change in frequency w-lAw given by 

AOJ a 
w 42 
- = -H(q) .  (3.11) 
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FIGURE 3. Graph of K ( v ) ,  giving the proportional increase in frequency as a function of 
7 = z / b ;  see equation (3.13). 

For example, when the hemispherical indentation is relatively small (b  4 2 ,  7 % l),  
then H - 1 and we retrieve the known formula 

Aw - a 
w 42’ 

- _ -  (3.12) 

On the other hand when the bubble is relatively close to the bottom of the 
indentation, i.e. 7 4 1,  we have H - 1, so that (3.12) applies in that case also. 
Generally, (3.8) shows that H ( 7 )  < 1, hence the change in frequency of the bubble is 
always less than that given by the plane formula (3.12). On the other hand it is 
always greater than a/4(b  + z ) ,  which would be the value for a bubble at  depth (b + z )  
in the absence of an indentation. 

For a fixed indentation radius b but variable z it is convenient to write 

(3.13) 

where fl(7) = 7W7). (3.14) 

The function K ( 7 )  is shown plotted against 7 in figure 3. 

4. Discussion and conclusions 
We have shown that the strength of the far field from an oscillating source lying 

just beneath a hemispherical indentation exceeds that in the corresponding case of 
a simpler plane by a factor of between 1 and 3. The change in the natural frequency 
of oscillation of a bubble due to its proximity to the hemispherical indentation is 
always less than that in the corresponding plane situation. 
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The theory that we have given is of course linear in the amplitude EU of the bubble 
oscillation. All terms of order e2, which will include the Bjerknes force tending to 
increase the distance between the bubble and the indented free surface, have here 
been neglected. For a bubble originating a t  the free surface as in the experiments of 
Pumphrey & Crum (1989), the ratio e may well be of order 1 initially. But owing to  
damping of the oscillation (which we have also neglected) there may be a t  least some 
time interval during which e is small enough for the linear theory to apply. The 
experiments show that these are circumstances in which a local frequency and 
amplitude of oscillation are well defined. A complete theory for the detachment of a 
bubble from a free surface has still to be given. 

The work in this paper has been supported by the office of Naval Research under 
Contract Number NO00 14- 88C-0563. 

Appendix. Comparisons with Oguz & Prosperetti (1990b) 
It is interesting to compare our results for a hemispherical indentation with those 

for the analytic model employed by Oguz & Prosperetti (1990b); see figure 4. To 
express the depression 5 of each point on the curves in figure 4 analytically as a 
function of its distance w from the axis would involve some complicated 
transformations. However, one can easily see that each curve is in fact closely fitted 
by a Gaussian expression 

where a, i3 are constants. In figure 4 we have indicated the width W of each curve at 
half the maximum depression. W is related to /3 by 

(A 1) 5 = C1.e-m2/2BZ, 

W / p  = ( 2  In 2); = 1.774. (A 2 )  

It will be seen that W ,  hence /?, is almost exactly the same for each of the curves. 

equate its volume V ,  given by 
To compare each indentation in figure 4 with an equivalent hemisphere, we shall 

V = nw2 d[ = 2na/3', (A 3) s: 
to the volume of a hemispherical indentation of radius b, that is 

Hence we take 

V = 3 b 3 .  

b = (3ap2)%. 

We shall also take z to be the depth of the bubble's centre below the lowest point of 
the indentation in figure 4. Choosing the unit of length so that the depth h of the 
bubble's centre below the plane surface is unity, the bubble's radius is then 0.1, in 
figure 4. Graphically we also find that W = 0.379, hence 

p = 0.322 (A 6) 

from (A 2) .  From these numbers we derive the entries in table 1. 

fluid, according to (3.10) is given by 
The ratio of the frequency of oscillation w to the frequency wo in an unbounded 
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a = 0.1 9 
FIQTJRE 4. (Adapted from Oguz & Prosperetti, 1990b.) Axial cross-sections of the indented 

plane surface when u = 0.1 and a = 0, 0.2, 0.4, 0.6, 0.8. 

Oguz & 

U b z T H ( 7 )  figure 7 
Prosperetti (1990 b) 

0 0 1 .o co 1 .ooo 0.950 1.053 1.051 
0.2 0.396 0.8 2.019 0.767 0.952 1.050 1.056 
0.4 0.499 0.6 1.202 0.759 0.937 1.068 1.067 
0.6 0.571 0.4 0.700 0.793 0.901 1.110 1.094 
0.8 0.629 0.2 0.318 0.872 0.782 1.279 1.220 

TABLE 1 .  Calculation of w 2 / w i  for a hemispherical indentation roughly equivalent to the model 
of figure 4 

This is shown in the next-to-last column of table 1. In  the last column is shown the 
frequency as calculated by Oguz & Prosperetti, their figure 7 .  The agreement is 
remarkably good. As might be expected, the closest agreement is for a = 0.4, when 
Wand a, representing the horizontal and vertical scales of the indentation, are most 
nearly equal. 

We may conclude that for indentations of a reasonable shape the frequency of 
oscillation can be calculated roughly from knowing (1) the total volume of the 
indentation, (2) the bubble’s radius and (3) its distance below the bottom of the 
indentation. Moreover, for such a calculation the hemispherical model, which 
involves simple analytic expressions only, can be quite adequate. 
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